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Further Monte Carlo Calculations for the 
Classical One-Component Plasma in the 
Range 100 ~< F ~< 160: The FCC Lattice 
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Very accurate Monte Carlo calculations for the one-component plasma (OCP) 
have been compared with the results of Slattery, Doolen, and DeWittJ l'z) We 
confirm their results and also find a slight dependence of the calculation of the 
internal energy per particle upon N, the number of particles. A detailed 
investigation for N =  108 permits us to evaluate the Helmholtz free energy for 
an OCP fcc lattice. As is usually believed, we find that the bcc lattice is more 
stable than the fcc lattice. The transition from the liquid to the fcc lattice phase 
occurs when Ff~ 196 + 1. A three-dimensional modified cubic procedure, 
capable of achieving high accuracy in using tables of two-particle interaction 
potentials, is described in Appendix B. 

KEY WORDS: One-component plasma; FCC lattice; Monte Carlo 
calculations. 

1. INTRODUCTION 

The purpose of this paper is to compare some recent Monte Carlo 
calculations we have performed for the OCP with the results of similar 
calculations which have been published recently by Slattery, Doolen, and 
DeWitt. (1'2) Our aim is to provide an independent check of the accuracy of 
the results presented in Refs. 1 and 2 and to gather further information about 
the anomalous N-dependent behavior found in Ref. 2 for the range 100 < 
F <  160. Here, F=(Ze)2/akT is the Coulomb coupling parameter 
introduced in the pioneering work by Brush, Sahlin, and Teller, (3) where a is 
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the ion sphere radius given by p -- 3/(47ra3), and p is the number density of 
particles of charge Z. 

Our calculations have been carried out using a modified version of the 
Monte Carlo OCP code originally developed by J. P. Hansen (4) and kindly 
made available to us by him. Hansen's program has been employed to carry 
out a thorough study of the OCP during the past decade and the 
investigations by Hansen and his coworkers have been largely responsible 
for the emergence of the OCP as an important subdiscipline of statistical 
physics (cf. Ref. 5 and references therein). 

2. BASIC METHODOLOGY 

Our principal modification of Hansen's code has been to replace the 
optimized Kubic harmonic expansion of the interparticle pair potential 
employed by Hansen (4) (and improved by Slattery, Doolen, and DeWitt (1'2)) 
with a three-dimensional table look up, as was used by Hubbard and 
Slattery. ~6) Our calculation thus utilizes a different method of calculation of 
the critical pair interaction potential from that employed in Refs. 1 and 2 
and can therefore be used to check the accuracy of their results. 

To compute the table of pair potentials used by our version of Hansen's 
OCP code, we have carried out a completely independent evaluation of the 
Ewald sums necessary to take into account the infinite number of periodic 
images of the N point charges which form the basis of the Monte Carlo 
computation (cf. Refs. 3 and 4). 

Following Ref. 1, the total internal energy U for a classical one- 
component plasma (OCP) for particles interacting through a Coulomb 
potential is given by 

u Uo 1 v , ( l , , -  rjl) (1) 
N k T  - N k T  + -2- i.;~"~= 1 N k T  

where 

and 

u0 r ~(r) r 
N k T  = --1.4186487395 ~--, N k T  -- N L  [Ua(r) + U2(r)] (2) 

1 erfc(v ~ r) - 1 (3) U,(r)  = - 7  

1 
Uz(r)= ~". ]n_r-----~erfc(v/~ I n - r ] )  

+ ~  1 2 
~ n  2 exp(--Trn ){exp[i(2rm �9 r)]} (4) 

n 
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Here the distance between particles r = r i -  rj, is measured in units of La, 
where a is the ion sphere radius, L = (4nN/3) 1/2, and N is the number of 
particles. The vector n is a vector with integer components, the prime on the 
summation sign indicates n = (0, 0, 0) is excluded, and r varies between zero 
and unity. To evaluate the potential within the OCP Monte Carlo code [see 
Eqs. (3) and (4)], we used a modified cubic spline interpolation formula 
which has been designed to give a nearly zero mean deviation from the exact 
potential within each interpolation region. Details of the interpolation 
procedure are given in Appendix B. 

Although, as Ref. 1 points out, a polynomial procedure may be more 
rapid for a vector computer, we chose the tabular procedure because of its 
flexibility for future investigations with more complicated two-body 
interactions. As an example, the OCP calculations could be extended to 
include consideration of finite temperature electron contributions. The effect 
of a linear zero-temperature electron response has been considered by 
Hubbard and SlatteryJ 6) The effect of finite temperature electron 
distributions can be developed by using a formalism for the electron density 
matrix such as that developed by March and Murray.~V) For a given electron 
temperature and F, new Ewald tables [similar to the tabulation of Eq. (4)] 
have been constructed and can be used with the present simulation code. 

The Monte Carlo calculation was performed as outlined in Ref. 1. For a 
given/1, the mximum step size allowed in moving ions was adjusted so that 
the probability of accepting new positions was 0.3-0.4. Once equilibrium 
was reached, the number of configurations used was sufficiently high that in 
principle the average ion could random walk from its initial position, using 
only the acceptable position changes, to a position several box lengths 
distant. 

3. RESULTS 

Our modified OCP Monte Carlo code has been used to compute the 
internal energies for several different values of F in the range from 
100 ~F~< 160. The results are given in Table I, together with results from 
Ref. 1 and 2 for the same range of F values. Comparison of the two sets of 
data shows that our numerical results agree very well with theirs, to within 
the combined limits of accuracy of our respective calculations. In most 
cases, the difference is less than our combined error estimates, and in no case 
does it exceed twice this value. 

With this confirmation of the accuracy of the calculations reported in 
Refs. 1 and 2, we found it very striking that the results obtained in those 
investigations showed N-dependent differences in the computed internal 
energies U at a given value of F that frequently exceeded seven or eight times 
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Table I. Results of This Work Compared with Those of Ref. 1 

N a 

This calculation Reference 1 

Type of No. b Type of 
U/NkT Error  start config's. U/Nkt Error  start 

100 256 -87 .519  5:0.004 liq. 3 - -  - -  - -  
125 108 -109 .834  • liq. 1.7 -109 .825  5:0.007 liq. 
125 128 -109 .771  • liq. 5 - 1 0 9 . 7 8 0  •  liq. 
125 128 --109.783 +0.003 lat. 2 - -  - -  - -  
125 256 --109.795 +0.003 liq. 5 - -  - -  - -  
140 108 -123 .223  +0.008 lat. 1.3 --123.239 5:0.010 liq. 
140 128 --123.151 +0.002 liq. 2.5 --123.160 5:0.006 liq. 
140 128 -123 .756  c :t:0.006 lat. 2 - -  - -  - -  
140 256 --123.173 +0.003 liq. 5 - -  - -  - -  
150 54 -132 .33  a • liq. 0.3 - -  - -  - -  
150 54 --132.782 • lat. 1.2 - -  - -  - -  
150 108 -132 .153  • liq. 2 - -  - -  - -  
t50 108 -132 .151  • liq. 1.3 - -  - -  - -  
150 108 -132 .729  5:0.006 lat. 1.7 - -  - -  - -  
150 118 ~ --132.127 • liq. 1.4 - -  - -  - -  
150 128 --132.075 •  liq. 2.5 -132 .078  •  liq. 
150 128 --132.750 c • lat. 1.0 - -  - -  - -  
150 256 --132.088 • liq. 5 - -  - -  - -  
150 500 -132 .103  • liq. 10 - -  - -  - -  
155 128 -136 .547  •  liq. 2.5 - -  - -  - -  
160 108 -141 .101  •  liq. 1.3 -141 .098  •  liq. 
160 108 --141.702 • lat. 2.6 --141.690 •  lat. 
160 128 --140.986 •  liq. 2 - 1 4 1 . 0 0 0  •  liq. 
160 128 --141.722 • lat. 1.5 --141.729 5:0.006 lat. 
160 256 --141.020 • liq. 5 - -  - -  - -  
160 256 -141 .771  c • lat. 2 - -  - -  - -  

a Number  of particles, 
In millions of configurations. 

c Metastable: prior to melting. 
a Prior to freezing. 
e This configuration cannot freeze into a fcc or a bcc lattice. 

t h e  e s t i m a t e d  e r r o r s .  T h e s e  d i f f e r e n c e s  a p p e a r  t o  b e  r ea l .  W e  f o u n d  t h e  

d i f f e r e n c e s  b e t w e e n  t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n s  g i v e n  in  T a b l e  I I  o f  R e f .  1 

f o r  108  p a r t i c l e s  a n d  f o r  128  p a r t i c l e s  t o  b e  p a r t i c u l a r l y  i n t e r e s t i n g ,  b e c a u s e  

128  p a r t i c l e s  f r e e z e  i n t o  a b o d y - c e n t e r e d  c u b i c  ( b c c )  l a t t i c e ,  w h i l e  108 

p a r t i c l e s  f r e e z e  i n t o  a f a c e - c e n t e r e d  c u b i c  ( f c c )  l a t t i c e .  I n  g e n e r a l ,  s y s t e m s  

c o n t a i n i n g  N = 213 p a r t i c l e s  a n d  t h e i r  p e r i o d i c  i m a g e s  c a n  o n l y  f r e e z e  i n t o  

b c c  s t r u c t u r e s ,  w h i l e  s y s t e m s  c o n t a i n i n g  N = 413 p a r t i c l e s  a n d  t h e i r  i m a g e s  
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Table II. Fits to 108-particle Monte Carlo Data 

581 

U/NkT U/NkT a'b Relative 
MC fitted error 

1 --0.573 --0.5730 0.000o 
6 --4.592 --4.5928 --0.0008 

10 --7.993 --7.9918 0.00! 2 
15 --12.310 --12.3076 0.0024 
30 --25.426 -25.4324 --0.0064 
40 -34.251 --34.2507 0.0003 
60 --51.961 --51.9638 --0.0028 
80 -69.727 --69.7351 --0.0081 

100 --87.534 --87.5412 -0.0072 
125 --109.825 -109.831 --0.0060 
140 --123.239 -123.2174 0.02l 6 
160 -141.098 -141.077o 0.0209 

160 141.690 -141.694 --0.0035 
180 --159.654 --159.642 0.0123 
200 -177.574 --177.581 --0.007~ 
300 --267.205 -267.220 --0.0153 

aFor l~<F~<160, liquid data are fitted by Eq. 
1.02113, c = 0.28398, and d=-0.97930. 

b For 160~<F~ 300, lattice data are fitted by Eq. 
h = 3741. 

(5) with parameters a=-0.89881, b =  

(6) with parameters u 0 =-0.895873 and 

are consistent only with fcc structures, where I is a positive integer. It is easy 
to see that  no value of  N is compat ib le  with both crystal  s t ruc tures ,  as this 
would require Iuc c = 21/3Ifc c. 

As the internal energies for 108-particle calculat ions are significantly 
lower than those for the 128-particle calculat ions when F > 100, in light of  
the more accurate  Monte Car lo  da ta  now avai lable  we decided to recheck 
the conclusion that  the bcc lat t ice is always the most  stable. (8'~1) To accom- 
plish this, we have followed the procedure  used in Refs. 1 and 2. Fo r  the 
liquid da ta  (1 ~<F~< 160), we have fitted the Monte  Car lo  results to the 
expression 

U / N k T =  aF + bI "~/4 +cf f  -~/4 q- d (5) 

by minimizing the squares of  the relative errors using a, b, c, and d as 
parameters .  Fo r  the solid phase, we have fitted the results to the expression 

U / N k T =  uoF + 3/2 + hF -2 (6) 
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where UoF=--0.895873F (Ref. 3) is the Madelung energy of  the fcc lattice 
and the single parameter  h is obtained by minimizing the squares of  the 
relative errors. We have checked our procedure by verifying that  we 
reproduce the 128-particle fits given by Ref. 1. Since some of  the N- 
dependence may  be due to computat ional  procedures, to avoid systematic 
errors in comparing with the 128-particle data, we have used the 108-particle 
data  of  Ref. 1 exclusively. Our results are given in Table II. The parameters  
obtained in our fits are quite similar to those obtained for the 128-particle 
data in Ref. 1. 

It is worth noting that  the differences between liquid, the bcc lattice, and 
the fcc lattice are clearly apparent  in the pair correlation functions, g(r). In 
Fig. 1, we have plotted the values of  g(r) from our calculations at F = 160 
for the liquid phase in our 128-particle, liquid-start calculation; for the 
metastable bcc lattice phase in our 128-particle, lattice-start calculation; and 
for the metastable fcc lattice phase in our 108-particle, lattice-start 
calculation. 

To determine the value of  F at which the transition from the liquid 
phase to the fcc lattice phase occurs in the 108-particle data, we require the 
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Fig. 1. Pair correlation functions for the OCP at 
F =  160. Curve (a) corresponds to 128-particle liquid 
state data. Curve (b) represents the (metastable) 128- 
particle, bcc lattice phase. Curve (c) depicts the 
(metastable) 108-particle fcc lattice phase. Separations 
are measured in units of the ion sphere radius, a. 
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Helmholtz free energy F for this system. These may be obtained by the 
methods described in Refs. 1 and 2. For the liquid phase, integration of 
Eq. (1) and addition of the ideal gas contribution yields 

F(r) fi v(r') dr' 
N k T  N k T  F '  

-- bF  + 4 (bF  1/4 - cF  - ~/4) + (d + 3) l n F  

- [a + 4 ( b - c )  + 1.1516] (7) 

as given in Ref. 2. For the fcc lattice phase, we write the free energy as the 
sum of the anharmonic approximation plus the harmonic contribution 
represented by the final term in Eq. (2). From Refs. 3 and 1 we thus have 

F F o 1 3N- 3 COj hcop h 

N k T  - N k T  + N In cop + 3 In k T  2F 2 (8) 

where F 0 represents the Madelung energy, and co; in the ion plasma 
frequency. We have evaluated the fcc lattice vibration frequencies as 
described in Appendix A and have written the lattice free energy in the form 

F 9 h 
N k T -  0 . 8 9 5 8 7 3 F + ~ - l n F - I . 8 8 5 6 - 2 F - - -  ~ 

1 3N--3 
fcc In bcc § ~ (In coy - -  - coj ) (9) 

N ~-~ j = l  

We have chosen this form to minimize the effects of inaccuracies in the 
summation over the lattice vibration frequencies. We obtain 

1 3N--3 

- -  coj ) = --0.7995 + 0.8507 (10) N ~ (In co f c c - l n  b co 
j = l  

yielding 

1 
F _ - 0 . 8 9 5 8 7 3 F +  l n F -  1 . 8 3 4 4 - ~ - 0 . 3 7 4 1 F  -~ (11) 

N k T  

When Eq. (11) for the fcc lattice free energy is combined with Eq. (7) 
for the liquid phase free energy, we find the value of F at the phase transition 
to be 

-fcc 196 • 1 (12) m 

The quoted uncertainty corresponds to an error of • in U / N k T ,  which 
is approximately our estimated error. The corresponding value for the tran- 
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sition from the liquid to the bcc lattice phase is F,~ = 178 + 1 (Ref. 2). Thus, 
the transition to the bcc phase occurs prior to the postulated transition to the 
fcc phase in a cooling sequence (increasing F). Further, direct comparison of 
the free energy of the fcc lattice given by Eq. (11) with that of the bcc lattice 
given by Refs. 1 and 2 shows that the free energy of the bcc lattice remains 
lower than that of the fcc lattice for all larger values of F. 

4. CONCLUSION 

We have confirmed the conclusion that the bcc lattice is more stable 
than the fcc, with the more accurate Monte Carlo data now available. The 
dependence of the internal energy, U/NkT, on N appears very complicated 
and not as simple as that discussed in Slattery et al. (Ref. 2). For F < 160, 
the 500-particle calculations clearly give lower U/NkT than the 128-particle 
calculations; however, so do the 108-particle calculations. Also, we do not 
find strong evidence for the "bump" in the curve of U/NkT vs. F for the 
range F =  140-160 which the authors of Ref. 2 thought present. Further 
understanding of the classical OCP must await interpretation of the N depen- 
dence of the results. The modified three-dimensional spline procedure for 
determining the two-particle interaction potentials accurately has been 
thoroughly tested and may be used in a variety of other statistical mechanics 
problems. 
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A P P E N D I X  A 

The lattice vibration frequencies for an fcc lattice can be evaluated in 
the same manner as employed by Carr (Ref. 9) for the bcc lattice. In both 
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cases, the eigenfrequencies are the solution of the characteristic equation 
(Eq. 22, Ref. 9), 

det(G~(f) -- (o2(I") 6~)  = 0 (A1) 

where f is a vector in the unit cell of reciprocal space. Because the Eq. (A1) 
is third order in 092, there are three independent solutions for each f. The 
matrix G,~ is given by (Eq. 21, Ref. 9) 

G~(f)  = @ + G~ ' ( f )  (A2) 

where the number density of particles is given by 

3 
p = ~ (r~ao) -3 (A3) 

and a 0 is the ionic Bohr radius. (This defines r s = a/a o, where a is the ion 
sphere radius.) Also from Ref. 9, Eqs. (13)-(16) and (21), we have 

a - L -  1 
Injl 

9 
e i f  �9 n j  _ _  

~zr~ 
n]n~ eir..j (A4) 

where the prime denotes exclusion of the point n = (0, 0, 0). Here the nj are 
normalized lattice points of a fcc lattice, which are given by 

nj = RJ[(7c/3) w3 r~ao] (A5) 

The summations over lattice sites have been evaluated by Cohen and 
Keffer (Ref. 10), who define 

S 3 ~ 4 / ~ , i  1 e i f  �9 nj (A6) 

and 

a 

S ~ B _  4 ~z~, nj ng eif..j 
j lnil 

(A7) 

We have solved the eigenvalue equation (A1) using the values of S 3 and S~ ~ 
tabulated in Ref. 10, and out results are listed in Table A1. From these data, 
we have also computed the average of co(k), which gives the zero-point 
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Values for ~s{f} and the Integration Weights Ws(I } at the Points, f', 
Reciprocal Lattice for which Data is Tabulated in Ref. 10. a 

8"21/~f W(f )091( f  ) CO2(f ) ~03(f ) 8'21/~---'~3 f W(f ) r  ) o)2(f ) fos(f ) 
7r 

(000) 1 31/2 0 0 (5,31) 48 1.480 0.7619 0.4785 
(111) 8 1.720 0.1414 0.1414 (533) 24 1.575 0.5771 0.4323 
(200) 6 1.693 0.259, 0.2594 (551) 24 1.366 0.9466 0.4890 
(220) 12 1.682 0.3868 0.1512 (600) 6 1.478 0.6388 0.6385 
(222) 8 1.692 0.2626 0.2626 (620) 24 1.421 0.7621 0.6329 
(311) 24 1.654 0.3594 0.3678 (622) 24 1.424 0.8158 0.5548 
(331) 24 1.623 0.5429 0.2662 (640) 24 1.271 1,016 0.592 o 
(333) 8 1.663 0.3423 0.3423 (642) 24 1.430 0.8270 0.5203 
(400) 6 1.591 0.4836 0.4836 (660) 4 1.241 1.048 0.5998 
(420) 24 1.577 0.5992 0.3936 (711) 24 1.398 0.7838 0.6564 
(422) 24 1.608 0.4779 0.4309 (731) 48 1.269 0.9724 0.6669 
(440) 12 1.476 0.8247 0.3762 (800) 3 1.426 0.6949 0.6949 
(442) 24 1.579 0.6058 0.3733 (820) 12 1.330 0.8222 0.7439 
(444) 4 1.651 0.3701 0.3701 (822) 8 1.241 1.048 0.5998 
(511) 24 1.521 0.6174 0.5532 (840) 6 1 .090 1.090 0.7898 

3/2 a The values given for are multiplied by r s , and 2~o is the value of the vibrationaI energy in 
ionic Rydberg units. 

energy of  the lattice, and the average of  In o~(k), which is needed in the text. 
These quantities, computed by the method given in Ref. 10, are 

1 (~%(f)}= 512 ~ W(f )~%(f )=2"650a '  bcclat t ice  (AS) 
~,y~o 2.6626 , fcc lattice 

(ln cos(f)} - 1 512 ~ W(f) lnc%(f )=- -0"8507 '  bccla t t ice  (A9) 
~,Ir -0 .7995 , fce lattice 

A P P E N D I X  B 

Rather than follow the conventional approach to expand a function 
f (x,  y, z) as a tensor product  of  one-dimensional cubic splines (which results 
in a ninth order polynomial for a three-dimensional problem), we chose 
instead to use the form 

2 
f ( x , y , z ) =  ~ 6xiOyifizk[f(2--i, 2 - - j , Z - - k ) +  

i,;,k= 1 Axif~x(2 - i, 2 --j,  2 -- k) 

+AyJyy(2--i ,  2- - j ,  2--k)+Azkf~z(2-- i ,  2 - - j ,  2--k)] (1) 
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where the interpolation cell is a unit cube, and 

6x1 - x - Xo 8x2 = I - 6xl 

A x l  = ~ x ~  - 1 A x 2  = (~x~ - 1 

and similar definitions hold for 3y:, 3z k, Ay:, and Az k. Here (x i, y:, zk) are 
the coordinates of  the tablulated values o f f  For  each triplet (x, y, z), tabular 
values o f f  and f xx , f yy ,  and fzz at the eight corners of  the cube containing 
(x, y, z), are indicated by f ( i ,  j ,  k) and fxx,yy,2z(i, j ,  k) where i, a~ k = 0 or 1. 
Note that Eq. (1) is the usual trilinear form if the second derivatives, fxx , fyy ,  

f ~ ,  are removed. I f  two coordinates are held fixed, Eq. (B1) is of  the same 
form as a standard cubic spline. The function f (and its associated second 
derivatives) enables us to determine qJ in Eq. (1) using ~ t ( r )=  f ( r )  + 1/r. The 
motivat ion for this procedure is twofold: (1) the form of  Eq. (B1) assures 
that for potential functions f ,  the source term [obtained by constructing V)"  
from Eq. (1)] varies linearly in an interpolation cell and is piecewise 
continuous (the procedure only requires four functions f fxx,  fyy, fz~ to be 
tabulated);  and (2) because we are effectively evaluating second derivatives, 
removing the 1/r variation of the tabulated function results in a function 
whose second derivatives are not large at r - - 0 .  

1.0 

>- 
o 0.8 
z 
I,l.I 
; D  
o 
tu 0.6 ,n,,. 
[,l= 

a 
i.u 
N 0.4 
. J  

=E 

O 
z 0.2 

0.0 
-2.0 

/ I* 

i / 
I I 

/ i  

-1.0 
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0.0 1.0 2.0 

ERROR (• 10 7 ) 

Fig. 2. Histogram of the differences Eq. (1) - Eq. (B1), "true" minus interpolated values of 
the pair potential for 500,000 randomly chosen sets of interparticle coordinate distances. The 
true potentials are accurate to one part in 109. The +++ curve is a Gaussian with the same 
mean, variance, and area as the histogram. The maximum observed error was <2 • 10 -v. 
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Taking advantage of  the cubic symmetry of  Eq. (4), storage is reduced 
by ordering (z > / y  ) x) the tabular values o f f  We have used 40 knots (0 < 
(x, y, z) < 0.5) in each dimension in the construction of  our tables for f In 
Fig. 2, we show the results of  our procedure, obtained by evaluating the 
potential, calculated from Eq. (4), for 500,000 random positions and 
comparing the results with Eq. (B1). The maximum error introduced by our 
procedure never exceeds one part of  107 , and the mean and standard 
deviation for all the trials was --8.6 • 10 .9 and 5.1 • 10 -8, respectively. (If 
the cubic terms are omitted in Eq. (B1), the accuracy is decreased by a 
factor of  100.) The mean should be compared with the mean value obtained 
by Ref. 1, 6.5 • 10 -8 and the deviation with their values, 4.9 • 10 -8. Thus, 
our accuracy is at least that used in Ref. 1; however, our m a x i m u m  error is 
103 times smaller than theirs. 
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